On Multiplicities of Points on Schubert Varieties in Graßmannians II

نویسنده

  • C. KRATTENTHALER
چکیده

We prove a conjecture by Kreiman and Lakshmibai on a combinatorial description of multiplicities of points on Schubert varieties in Graßmannians in terms of certain sets of reflections in the corresponding Weyl group. The proof is accomplished by relating these sets of reflections to the author’s previous combinatorial interpretation of these multiplicities in terms of non-intersecting lattice paths (Séminaire Lotharingien Combin. 45 (2001), Article B45c). Moreover, we provide a compact formula for the Hilbert series of the tangent cone to a Schubert variety in a Graßmannian assuming the truth of another conjecture of Kreiman and Lakshmibai.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicities of Points on Schubert Varieties in Grassmannians

An important invariant of a singular point on an algebraic variety X is its multiplicity : the normalized leading coefficient of the Hilbert polynomial of the local ring. The main result of the present note is an explicit determinantal formula for the multiplicities of points on Schubert varieties in Grassmannians. This is a simplification of a formula obtained in [5]. More recently, the recurr...

متن کامل

On Multiplicities of Points on Schubert Varieties in Grassmannians

Abstract. We answer some questions related to multiplicity formulas by Rosenthal and Zelevinsky and by Lakshmibai and Weyman for points on Schubert varieties in Grassmannians. In particular, we give combinatorial interpretations in terms of nonintersecting lattice paths of these formulas, which makes the equality of the two formulas immediately obvious. Furthermore we provide an alternative det...

متن کامل

Multiplicities on Schubert Varieties

We calculate using Macaulay 2 the multiplicities of the most singular point on Schubert varieties on Gl(n)/B for n = 5, 6. The method of computation is described and tables of the results are included.

متن کامل

Pieri-type Formulas for Maximal Isotropic Grassmannians via Triple Intersections

We give an elementary proof of the Pieri-type formula in the cohomology of a Grassmannian of maximal isotropic subspaces of an odd orthogonal or symplectic vector space. This proof proceeds by explicitly computing a triple intersection of Schubert varieties. The decisive step is an exact description of the intersection of two Schubert varieties, from which the multiplicities (which are powers o...

متن کامل

On Orbit Closures of Spherical Subgroups in Flag Varieties

Let F be the ag variety of a complex semi-simple group G, let H be an algebraic subgroup of G acting on F with nitely many orbits, and let V be an H-orbit closure in F. Expanding the cohomology class of V in the basis of Schubert classes deenes a union V 0 of Schubert varieties in F with positive multiplicities. If G is simply-laced, we show that these multiplicites are equal to the same power ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005